enough of the clutter. let’s get davis’ R-mode FA as quickly as possible. feel free to skip over this if you’re comfortable with it. we recall the design matrix X of centered data:

we compute :

x

=

we get its eigenstructure; we construct a diagonal matrix of the square roots of the eigenvalues:

we check that U is orthogonal:

x

=

we define (the factors) as the -weighted eigenvector matrix:

x

=

and we define (the scores) , “which project the n individual objects onto the principal vectors [factors].”

x

=

that was R-mode. Q-mode is similar. in fact, it’s more than similar, but we’ll get to that. the starting point is to form instead of .

Advertisements
(function(g,$){if("undefined"!=typeof g.__ATA){
g.__ATA.initAd({sectionId:26942, width:300, height:250});
g.__ATA.initAd({sectionId:114160, width:300, height:250});
}})(window,jQuery);
var o = document.getElementById('crt-63368185');
if ("undefined"!=typeof Criteo) {
var p = o.parentNode;
p.style.setProperty('display', 'inline-block', 'important');
o.style.setProperty('display', 'block', 'important');
Criteo.DisplayAcceptableAdIfAdblocked({zoneid:388248,containerid:"crt-63368185",collapseContainerIfNotAdblocked:true,"callifnotadblocked": function () {var o = document.getElementById('crt-63368185'); o.style.setProperty('display','none','important');o.style.setProperty('visbility','hidden','important'); }
});
} else {
o.style.setProperty('display', 'none', 'important');
o.style.setProperty('visibility', 'hidden', 'important');
}

## Leave a Reply

Fill in your details below or click an icon to log in:

You are commenting using your WordPress.com account. ( Log Out / Change )

You are commenting using your Twitter account. ( Log Out / Change )

You are commenting using your Facebook account. ( Log Out / Change )

You are commenting using your Google+ account. ( Log Out / Change )

Connecting to %s